Higher Inductive Types in Cubical Computational Type Theory

نویسندگان

  • Evan Cavallo
  • Robert Harper
چکیده

In homotopy type theory (HoTT), higher inductive types provide a means of defining and reasoning about higher-dimensional objects such as circles and tori. The formulation of a schema for such types remains a matter of current research. We investigate the question in the context of cubical type theory, where the homotopical structure implicit in HoTT is made explicit in the judgmental apparatus. Within the computational cubical type system framework of Angiuli et al., we implement a class we call cubical inductive types, which includes n-truncations,W-quotients, and localizations. We suggest an extension to indexed inductive types by defining an example, a homotopy fiber type. From this we derive an identity type, making our theory a model of Martin-Löf type theory. Using Angiuli et al.’s implementation of univalence, we obtain a computational interpretation of HoTT with a general class of higher inductive types. This interpretation admits a canonicity theorem: any zero-dimensional element of a cubical inductive type evaluates to a constructor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Higher Type Theory IV: Inductive Types

This is the fourth in a series of papers extending Martin-Löf’s meaning explanation of dependent type theory to higher-dimensional types. In this installment, we show how to define cubical type systems supporting a general schema of cubical inductive types, inductive types whose constructors may take dimension parameters and may have specified boundaries. Using this schema, we are able to speci...

متن کامل

On Higher Inductive Types in Cubical Type Theory

Cubical type theory provides a constructive justification to certain aspects of homotopy type theory such as Voevodsky’s univalence axiom. This makes many extensionality principles, like function and propositional extensionality, directly provable in the theory. This paper describes a constructive semantics, expressed in a presheaf topos with suitable structure inspired by cubical sets, of some...

متن کامل

Cubical sets and the topological topos

Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstone’s topological topos was created to present the geometric realization of simplicial se...

متن کامل

Computational Higher Type Theory III: Univalent Universes and Exact Equality

This is the third in a series of papers extending Martin-Löf’s meaning explanations of dependent type theory to a Cartesian cubical realizability framework that accounts for higherdimensional types. We extend this framework to include a cumulative hierarchy of univalent Kan universes of Kan types; exact equality and other pretypes lacking Kan structure; and a cumulative hierarchy of pretype uni...

متن کامل

Computational Higher Type Theory II: Dependent Cubical Realizability

This is the second in a series of papers extending Martin-Löf’smeaning explanation of dependent type theory to account for higher-dimensional types. We build on the cubical realizability framework for simple types developed in Part I, and extend it to a meaning explanation of dependent higher-dimensional type theory. This extension requires generalizing the computational Kan condition given in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018